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Categorical Structures in Physics
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I give a brief exposition of some categories related to the mathematical
representation of physical systems; namely smooth spaces, defined as spaces with
coherent sets of curves and functions, and Hilbert geometries, considered as
specializations of state spaces to the case of entities.

1. INTRODUCTION

Category theory provides a method of encoding structure in a uniform

way, thereby enabling the use of general theorems on, for example, equiva-

lence and universal constructions. In the following I shall survey some catego-

ries that arise naturally in the mathematical description of physical systems:

as such objects will be taken as primitive, with morphisms being subsequently

introduced to encode an existing structure. I shall therefore employ a simple
set-theoretic viewpoint of category theory, although this is more a matter of

convenience than a definite position on the relative foundationality of sets

and categories.

I shall not repeat the standard categorical definitions to be used in the

following: for details see, for example, AdaÂmek et al. (1990), Borceux (1994),
and MacLane (1971). In fact the categories I shall introduce will all be simple

concrete categories, that is, categories with a natural faithful functor to the

category Set of sets and maps. The objects of such categories can be reasonably

thought of as being sets with additional structure which is preserved by the

morphisms. As for functors, a simple example of some relevance is provided

by considering posets as categories, with Hom(a,b) being a singleton if a ,
b and empty otherwise. In this case, a functor between posets is just an

isotone map.

1 Department of Theoretical Physics, CH-1211 Geneva 4, Switzerland.

121

0020-7748/98/0100-012 1$15.00/0 q 1998 Plenum Publishing Corporation



122 Moore

In a previous work (Moore, 1996) I have given a category-theoretic

presentation of state spaces and property lattices in general. In this exposition

I briefly discuss two specific categories which arise when one considers the
paradigm state spaces for classical and quantum entities, namely smooth

spaces and Hilbert geometries.

2. SMOOTH SPACES

I follow the exposition of FroÈ licher and Kriegl (1988); for an introductory
survey see FroÈ licher (1982). Let S and R be sets and } be a fixed set of

maps from S to R. An }-space X is a triple (Ax , #x , ^x), where

x Ax is a set

x Cx # Hom(S; Ax) is a set of curves
x ^x # Hom(Ax; R) is a set of functions

which is such that

x ^x 5 F #x : 5 {f P Hom(Ax; R) | f + C P } " C P #x}
x #x 5 G ^x : 5 {C P Hom(S; Ax) | f + C P } " f P ^x}

Note that F G F 5 F and G F G 5 G . Thus, to any ^0 # Hom(Ax; R) we can

associate the }-structure defined by #x 5 G ^0 and ^x 5 F #x , and to any

#0 # Hom(S; A,x) we can associate the }-structure defined by ^x 5 F #0

and #x 5 G ^x. Let (Ax , #x , ^x) and (AY , #Y , ^Y) be }-spaces and g: Ax ª
AY be a map. Then g is called an }-map if

x ^Y + g + #x # }

The resulting category of }-spaces has several physically relevant prop-

erties. First of all, it is complete and cocomplete, with limits and colimits

being constructible from the corresponding limits in the category of sets. For

example, let Xj be an indexed set of }-spaces. Then the product P jXj is
given by

x A P jxj 5 P j Axj

x # P jxj 5 {# P Hom(S; A P jxj ) | p j + C P #xj " j }

x ^ P jxj 5 F # P jxj

Further, under suitable constraints on the set }, the category is Cartesian

closed (FroÈ licher, 1979, 1980). Physically, this means that given two }-
spaces X1 and X2, one can provide the function space Hom(X1; X2) with a

natural }-structure satisfying

x Hom(X1 P X2; X3) . Hom(X1; Hom(X2; X3))

x Hom(X3; X1 P X2) . Hom(X3; X1) P Hom(X3; X2)
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x There exists a natural morphism Hom(X2; X3) P Hom(X1; X2) ª
Hom(X1; X3).

The paradigm examples of }-spaces are l ` spaces, where } 5 l ` (N;

R), and smooth spaces, where } 5 C ` (R; R). Both categories are indeed

Cartesian closed, although for the latter the proof is nontrivial.

The category l ` is closely related to the category Born of bornological
spaces. Here a bornological space is a pair (X, @), where X is a set and @
is a collection of subsets of X such that

x {x} P @ for each x P X
x If B2 P @ and B1 # B2, then B1 P @
x If B1, B2 P @, then B1 ø B2 P @

Further, a bornological map between the bornological spaces (X1, @1) and
(X2, @2) is a map f : X1 ª X2 such that

x If B1 P @1, then f (B1) P @2

For more details on bornological spaces and their applications see, for exam-

ple, Hogbe±Nlend (1977). In fact, there exists a natural embedding i : l ` ª
Born with left adjoint h satisfying h + i 5 Id, and such that both functors
preserve the underlying spaces and maps. Further the embedding i commutes

with the functors describing the Cartesian closedness of l ` and Born.
Finally, within the category of smooth spaces one can define a general

class of dualized vector spaces in which an appropriate calculus can be

developed. Here a dualized vector space is a pair (E, E 8) where E is a vector

space and E 8 is a subspace of the algebraic dual of E satisfying certain
conditions. The smooth maps are then defined by

C: R ª E P # if and only if m + C P # ` (R; R) for each m P E8

f: E ª F is smooth if and only if f + C P #F for each C P #E

Note that on such a space one can construct:

x A locally convex topology such that E 8 becomes the topological dual.

x A convex bornology such that E 8 becomes the bornological dual.
x A convergence structure such that E 8 becomes the continuous dual.

3. HILBERT GEOMETRIES

A projective geometry is a set G with a ternary relation l such that

(Faure and FroÈ licher, 1993):
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x l ( p, q, p) " p, q P G.
x If l (r, p, q) and l (s, p, q) with p Þ q, then l (r, s, p).

x If l ( p, q, r) and l ( p, s, t), then there exists u P G such that l (u, q,
s) and l (u, r, t).

In our context we have that l ( p, q, r) if q 5 r or p P {q, r} ’ ’ . We call p,
q, and r collinear if l ( p, q, r). A subset E of G is called a submanifold of

G if for all distinct q, r P E we have that l ( p, q, r) implies p P E. Morphisms

of projective geometries are then partially defined maps f : G1 \E1 ª G2

such that:

x E1 ø f 2 1 (F ) is a linear manifold in G1 for each linear manifold F
in G2.

For an exposition of the basic properties of the category of projective geome-

tries see Faure and FroÈ licher (1995b).
A projective geometry is called irreducible if each line contains at least

three points. The first fundamental theorem states that if the irreducible

projective geometry G has dimension at least three, then one can construct

a division ring K and a vector space V over K such that G is isomorphic to

the set of 1-dimensional subspaces of V. I follow the exposition of Faure and
FroÈ licher (1994). Fix a hyperplane H in G and define G to be the set of

morphisms g: G \E ª G such that g ( p) 5 p for each p P H \E. Note that

G has an induced projective structure l defined by l(g1, g2, g3) if there exist

pi such that l (gi (q),q, pi) for all q P G \E i and l (g1(q), g2(q), g3 (q)) for all

q P ù {G \E i}. Further, define V 5 G \G and fix a point 0 P V, with correspond-

ing constant morphism « . Finally, define K 5 K ø { « }, where K is the set
of morphisms l : G ª G such that l ( p) 5 p for each p P G and l( l ( p), g,

0) for each g P G. One can then provide K with a division ring structure

and prove that V is a vector space over K. For an example in two dimensions

which cannot be coordinatized by a division ring see GuÈ naydin et al. (1978).

Finally, for a discussion of the characteristic of K in terms of lattice identities

see Lakser (1992).
The second fundamental theorem states that for each morphism g: G \E

ª G8 between irreducible projective geometries whose image is more than

a single line one can construct a semilinear map f : V ª V 8 such that E 5
{[ f ] | f ( f ) 5 0}, and for [ f ] ¸ E we have g ([ f ]) 5 [f ( f )]. Recall that f :
V ª V 8 is called semilinear if there exists a homomorphism s: K ª K 8
such that

f ( f 1 l c ) 5 f ( f ) 1 s ( l ) f ( c )

for each f , c P V and l P K. We start by choosing a morphism h: G \E ª
G8 such that h + i 5 i8 + g, where i: G ª G maps a point of G to the
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corresponding constant map. One then proves by computation that the restric-

tion of h to V 5 G \G is a semilinear map f : V ª V 8. The field homomorphism

is defined by the condition that h + l 5 s ( l ) + h.
Finally, a Hilbert geometry is a projective geometry G with a binary

relation ’ such that (Faure and FroÈ licher, 1995a):

x If p ’ q, then q ’ p.
x If r ’ p, s ’ p, and q P r Ú s, then q ’ p.
x If p Þ q, there exists r P p Ú q such that r ’ p.
x For each p P G there exists q P G with p ’ ¤ q.

One can then prove that the map

g: G ª G*: p j p ’ 5 {q | p ’ q}

is a morphism, where G* is the dual geometry of G, whose points H are

hyperplanes and where l (H1, H2, H3) if H2 5 H3 or H2 ù H3 # H1. The

corresponding semilinear map f : * ª ** then defines a form

^ ? | ? & : * 3 * ª K: ( f , c ) j ( f ( f ))( c )

Further, one can prove that the homomorphism s: K j Kop is invertible and
so defines an involutive antiisomorphism s : K ª K. The map ^ ? | ? & is then

a definite Hermitian form in the sense that

^ f | c 1 x & 5 ^ f | c & 1 ^ f | x &

^ c | l c & 5 l ^ f | c &

^ c | f & 5 s ( ^ f | c & )

^ f | f & 5 0 if and only if f 5 0

The linear spaces V are Hermitian spaces in the sense that for each

orthogonally closed subspace W of V we have that W % W ’ 5 V. If the

underlying field is R, C, or H, then one can prove that V is complete in the

norm topology defined by ^ ? | ? & and is so a Hilbert space, and that the biorthogo-

nal subsets of V are exactly the closed submanifolds (Piron, 1964, 1976;
Amemiya and Araki, 1967). To prove this, consider a vector f in the comple-

tion V of V with respect to ^ ? | ? & . Then there exists c P V such that f 5 c
2 x with f ’ x in V. One then chooses families { f n} and { x m} in V which

converge to f and x , respectively, and which are such that f n ’ x m , f n ’
x , and f ’ x m for all n and m. Set W 5 { x 1, x 2, . . .} ’ . By hypothesis there

exist h P W and z P W ’ such that c 5 h 1 z . But one can prove that f
is the projection of c onto the closure W of W since f P W and x ’ W,

and this projection is just h . Since h is in V, the space is then complete.

Note that an infinite-dimensional Hermitian space is based on one of

the fields R, C, or H if and only if it contains an infinite orthonormal sequence
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(SoleÁ r, 1995), thereby making explicit the intuition that the essential feature

that distinguishes standard and nonstandard Hermitian spaces is the ability

to normalize. I follow the exposition of Prestel (1995). We define F 5 { l
P K | s ( l ) 5 l } and for l , m P F we set l # m if m 2 l P { ^ f | f & | f P
*}. Then, using the infinite orthonormal sequence one can prove that #
defines a Baer order: l # 0 or 0 # l , if 0 # l and 0 # m , then 0 # l 1
m , if 0 # , then 0 # n l s ( n ) for all n P K, and 0 # 1. One then proves that

the order is Archimedean in the sense that if 0 # l , 1/n for all positive

integers n, then l 5 0. This implies that K is isomorphic to a subfield of
R, C, or H (Holland, 1977). One then proves that each Dedekind cut in F
is realized in F and so K is equal to R, C, or H. Here a Dedekind cut is a

subset D of F which is bounded from above and is such that if l P D and

m # l , then m P D. For an example of a nonstandard Hermitian space see

Keller (1980).
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